Paper -5
Estimation
Population vs sample
Aggregate of anything under study is called population.

Ex:- aggregate of person in india is population of persons in india apart of
population is called samples if every unit of population has the same
probability to be included in the samples gradually we consider random
sapmle for the study of the population.

Parameter and statistic

Any calculation based on population is called parameter.

Ex- if we calculate artimatic mean variance etc from the population values
they will be called parameter. The calculation based on sample values is
called statistic i.e from sample values they will be statistic.

When population is large or infinite the calculation of parameter is difficult
we take help of statistic for this purpose and infer about parameter we
consider statistic as estimate when statistic is used for population parameter
we consider statistic as estimate when statistic is used for population
parameter the statistic become estimate and the process is known as
estimation .

There are mainly two two types of estimaton
1. Point estimation 2. Interval estimaton

For the differentiation of point estimation and interval estimation we can use
an example . if somebody ask what is distance between patna and gaya one
can answer in two ways .

The distance between patna and gaya is 101km

The distance between patna and gaya is to 90 km to 101km.



Both cases are based on estimaton in the 1% case is point estimation and the
2" is interval estimation clearly the interval estimation is better then point
estimation .

Now we shall discuss frist method of point estimation prof. RA fisher discuss
both point estimation and interval estimation in detail .he started point
estimation by describing the four properties of a good estimator they are-

1 unbiasedness 2 consistency 3 efficiency 4 sufficiency

Unbiased estimator

An estimator of a given parameter is said to be unbiased if its expected
value is equal to the true value of the parameter.

In other words, an estimator is unbiased if it produces parameter estimates
that are on average correct.

An unbiased estimator is an accurate statistic that's used to approximate a population parameter. “Accurate” in this
sense means that it's neither an overestimate nor an underestimate. If an overestimate or underestimate does
happen, the mean of the difference is called a “bias”

In more mathematical terms, an estimator is unbiased if

(@) =8

That’s just saying if the estimator (i.e. the sample mean) equals the parameter (i.e. the population mean), then it's
an unbiased estimator.

You might also see this written as something Like "An unbiased estimator is when the mean of the statistics
sampling distribution is equal to the population’s parameter” This essentially means the same thing: if the statistic
equals the parameter, then it's unbiased.

consistency

A consistent estimate has insignificant errors (variations) as sample

sizes grow larger. More specifically, the probability that those errors will vary
by more than a given amount approaches zero as the sample size increases.
In other words, the more data you collect, a consistent estimator will be
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close to the real population parameter you’'re trying to measure. The sample
mean and sample variance are two well-known consistent estimators.
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Efficiency

an efficient estimator is one that has small variances (the estimator with the
smallest possible variance is also called the “best” estimator). In other words,
the estimator deviates as little as possible from the “true” value you are
trying to estimate

sufficiency

a statistic Y is said to be a sufficient estimator for some parameter 0 if

the conditional distribution of Y: T(X1, X»,...,X,) doesn’t depend on 6. While
this definition is fairly simple, actually finding the conditional distribution is
the tough part. In fact, most statisticians consider it extremely difficult. One,
slightly easier, way to find the conditional distribution is to use the
Factorization Theorem.

Maximum likehood and their application

The MLE is an example of a point estimate because it gives a single value for
the unknown parameter (later our estimates will involve intervals and
probabilities). Two advantages of the MLE are that it is often easy to
compute and that it agrees with our intuition in simple examples

Definition: Maximum Likelihood Estimators

Suppose that the data x,, ... , x,, has joint density
function

ﬂxla s s Xy s 91: niner oy 8p) :fj(f-(g)
Then the Likelihood function is defined to be
L(g) =L(919 s Qp)
R ne gy 1 Gy s 5 )

and the Maximum Likelihood estimators of the
parameters &), ... , 0, are the values that maximize

L(F) =L@, ..., 6)
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Now we shall derive maximum likelihood estimation of some important

distribution.

1.) Binomial distribution

2.) Poisson distribution

3.) Normal distribution

4.) Exponential distribution

Binomial distribution
Xn € R be samples obtained from a Binomially Distribution.

Let X4, Xa,...,

Binomial Distribution is used to model 'x' successes in 'n' Bernoulli trials. Its

p.d.f. is given by
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Poisson distribution

Let X,,%5,...,%, € R be a random sample from a Poisson distribution
The p.d.f. of a Poisson Distribution is :

AE
flx) = ——— ; where x =0,1,2,...

The likelihood function is:

L —A AE‘ 1 T
i—1 Ti- ]_.[1:'=1 T;

The log-likelihood is:

InL(\) = —An + Z xi.ln(\) — En(H i)

=1

Setting its derivative vith respect to A to zero, ve have:

d 1
Y InL(A) = —n+;$z. =0
giving,

vrhich is the maximum likelihood estimate

Normal distribution

For Uniformly Distributed random wvariables Xq,%3,...,X, € R, the p.d.f is given by:

fix;) = % Dif0 < xi < @

f(x) = 0 ; otherwise

If the uniformly distributed random wariables are arranged in the following order
0<X1<X2<X3 . <Xn<86.

The likelihocod function is given by:

1

L(6) = Hf[m =H 5=

The log-likelihood is:
InL(8) = —nin(d)
Setting its derivative with respect to parameter & to zero, we get:

d —n
InL(8) —
k@ =—

which is < 0 for 8 = 0

Hence, L(#) is a decreasing function and it is maximized at & = x

The maximum likelihood estimate is thus,




EXPONENTIAL DISTRIBUTION

Let Xq,X3,...,%X, € R be a random sample from the exponential distribution with p.d.f.
f(x)=(1]0) * exp(-x|0)

The likelihood function L(8) is a function of x4, X2, X3,...,Xn, given by:

L(©)=(1]0) * exp(-x1]0) * (1[6) * exp(-x2|06) * ... * (1]©) * exp(-xn | 6)

L(®)= (1]67) * exp(i-1I" -x;|6)

We need to maximize L(8) . The logarithm of this functicn will be easier to maximize.
In [L(B)] =-n . In(B) - (1]6) i=1Z" x;

Setting its derivative with respect to the parameter (8) to zero, we have:

(d]d®) In[L(8)] = (-n|8) +;_1Z" (-xi| 8%) =0

which implies that

:Z:‘ 1 Fi - X

a
n
= Mean of xq1, X3, X3,...,Xp

Properties of maximum likelihood estimation

i. M.l.e are not necessarly unbiased

ii. M.lLe are consistant
ili. The distribution of mle’s tends to normality for large sample size
iv. The mles’s are normality distribution when n is large

v. M.l.e are most efficient M.l.e are sufficient if sufficient estimate are
exist If 8 is the m.l.e of e,f(8) is also m .l.e of f(e)



interval estimation

Interval estimation 1s the use of sample data to calculate an interval of possible orprobable values
of an unknown population parameter, 1n contrast to point estination, which 1s a single number.

Formula
p=zd E% v
Where —

s I =mean

Z « = the confidence coefficient
3

s o = confidence level

o = standard deviation

* n =sample size

Confidence interval

A confidence interval is an interval that will contain a population parameter a
specified proportion of the time. The confidence interval can take any

number of probabilities, with the most common being 95% or 99%.

A confidence interval is the probability that a value will fall between an

upper and lower bound of a probability distribution. For example, given a

99% confidence interval, stock XYZ's return will fall between -6.7% and +8.3%
over the next year. In layman's terms, you are 99% confident that the returns

of holding XYZ stock over the next year will fall between -6.7% and +8.3%.

Statisticians use confidence intervals to measure uncertainty. A higher
probability associated with the confidence interval means that there is a
greater degree of certainty that the parameter falls within the bounds of the
interval. Therefore, a higher confidence level indicates that the parameters

must be broader to ensure that level of confidence.
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Confidence interval for means of a normal population

The distribution of sample means for samples of size n can be illustrated as follows:
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For any given value of z the probability that a sample mean lies within z" standard deviations of
the mean can be calculated using ordinary left-tail probability tables. Let's call this probability C.
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WNotice, in particular, that this probability tells us something about the sample means but nothing
about the population mean. Now let's consider the inequality:
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Subtract u from all three terms:
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Subtract x-bar from all three terms:



_ @ _ @
—X—f—==—p=—xt+zt—+=
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Multiply all three terms by -1 remembering to reverse the mequalities:
— o _ F
itzf—==zp=x—z*

Vn = Vn

Write the resulting inequality in an alternate form:

In this form, C 1is called the confidence level and indicates how confident we are that the population
mean lies within the indicated confidence interval. For example, 1if C =0.95 then z* =1 96. We say
that we are 95% confident that the population mean lies within the interval:

7
¥x—19%—==u=x+196
Jn K



Confidence interval for variance of a normal population

One variance

Theorem. If X7, X5, ...X), are normally distributed and a = X%—a/2 ,_qand b=

2

2
Xar,/2,n—1’

then a (1-#)% confidence interval for the population variance - is:

( . _51)82 <o _al)sz)

And a (1-a)% confidence interval for the population standard deviation o 1s:

(_\/(’”—”3<g<_\/(”"—”5)
N Y

Proof. We learned previously that if X1, X5, ...X,, are normally distributed with
mean u and population variance o2, then:

(n—1)52 9

o2 ~ Xn-1



with (a = le,fa /2) and (b = xi /2), we can write the following probability statement:

(n —1)82
Pla< ————<b|=1-a
o

Now, as always it's just a matter of manipulating the quantity in the parentheses. That is:

—1)5?

<b
= o2 =
we get:

Taking the reciprocal of all three terms, and thereby changing the direction of the inequalities

1 o2
— >
a

1
_ >
(n—1)S% —

b

Now, multiplying through by (n—1)S2, and rearranging the direction of the inequalities, we
get the confidence interval for o2

n—1)8? n—1)82
! <ol < Q
b -~ a
as was to be proved. And, taking the square root, we get the confidence interval for o:

V(n—1)8? e V(n—1)5?
Vi Ja
two variance

Theorem. If X1, Xs, ..., Xa ~ N(ux,0%) and ¥1,Y3,..., Y ~ N(uy, of ) are mdependent random samples,
and:

1
(De=F qpm-1n-1)=

and
Fﬂf?(n —1m-— 1)

(2) d=Fys(m—1,n-1).

then a (1-«) 100% confidence interval for o} /of 1s:




Proof. Because Xq, X, ..., Xn ~ N(px,oi} and ¥y, Ya, ..., ¥ ~ N(py,cr';’,) , it tells
us that:
(r— I}Si {m — 1}32
T e T
X G'

¥

Then, by the independence of the two samples, we well as the definition of an F random
variable, we know that:

(m—1)Sy
T/(m—l}

ol 52
L. L wFm-1n-1)
ov Sy

Therefore, the following probability statement holds:

o2
PF_ u(m—ln 1]{—1-3{15‘:-(11; Lrn—-1)| =1—-a
"’Y Sx

Finding the (1—a)100% confidence interval for the ratio of the two population variances
then reduces, as always, to manipulating the quantity in parentheses. Mulfiplying through
the inequality by:
Sx
Sy
and recalling the fact that:

1
B ) = e T
7 1

the (1—a)100% confidence interval for the ratio of the two population variances reduces to

1 82 o S2
< < F-r (m—1,n— 1)—
Fa{n—1,m-1) § = o}

Sy




Minimum variance unbiased estimation

[f an unbiased estimator has the variance equal to the CRLB, it must have the
minimum variance amongst all unbiased estimators. We call 1t the minimuom
variance unbiased estimator (MVUE) of .

Sufhiciency 15 a power{ul property in finding unbiased, minimum variance estima-
tors. If 7(Y'} 1s an unbiased estimator of +/ and S 1s a statistic suflicient for ¢,
then there 15 a function of .S that 15 also an unhased estimator ol / and has no
larger variance than the variance of 7(Y'). The following theorem formalizes this
statement.

Theorem 2.5. Rao-Blackwell thecrem.

LetY = (Y.Y5..... Y)Y be a random sample, S = (S|... .. SOb be jointly
sufficient statistics for 9 = (V... .. )Y and T(Y') (which is not a function of
S} be an unbiased estimator of & = g{(9). Then, U7 = E{T|S) is a statistic such
that

(a) E(I7) = o, so that U7 is an unbiased estimator of o, and
(b) var(l’) < var(7T).

Proof. First, we note that {7 15 a statistic. Indeed, since S are jointly sufficient for
¥, the conditional distribution Y |8 does not depend on the parameters and so the
conditional distribution of a function 7°(Y") given S, 7|8, does not depend on ¢
either. Thus, {7 = E{7T|S) 15 a function of the random sample only, not a function
ol ¥, therelore 1t 15 a statistic.

Next, we will use the known facts about the conditional expectation and variance
given Exercise 115 Since 715 an unhiased estimator of ¢, we have

E{l/) = E[E(T|S)] = E(T) = o.
So {7 1s also an unbiased estimaltor of <, which proves {a). Finally, we get

va(T) = varlE(T]S)] + E[var(T]S5)]
= var({7) + E[vau(T]5)].



However, since 7" is not a function of S we have var(7'|.S) > 0, thus, it follows
that E[var(7'|S)] > 0, and hence (b) is proved. O

[t means that, if we have an unbiased estimator, T, of ¢, which 1s not a function
of the sufficient statistics, we can always find an unbiased estimator which has
smaller variance, namely U = E(T|S),...,S,) which is a function of S. We
thus have the following result.

Concept of sufficient statistics

A statisticis a function T = r( X, Xs. - - -, X)) of the random sample X, Xy, ---, X,
Examples are

X, = 1 X;., (the sample mean)
n
i=1
. 1 o« .
2 — — —— i — 2 2 1 .
8 = — :E=1 (X — X,)°,  (the sample variance)

T| = I'.I'.I.HI{X]_.XQ."'._XH_}
Tz = EI
(1)

The last statistic is a bit strange (it completely igonores the random sample),
but it is still a statistic. We say a statistic T is an estimator of a population
parameter if T 15 usually close to #. The sample mean is an estimator for
the population mean; the sample variance is an estimator for the population
variation.

Obviously, there are lots of functions of X} X, --- . X and so lots of
statistics. When we look for a good estimator, do we really need to consider
all of them., or i1s there a much smaller set of statistics we could consider?
Another way to ask the question is if there are a few key functions of the
random sample which will by themselves contain all the information the
sample does. For example, suppose we know the sample mean and the sample
variance. Does the random sample contain any more information about the
population than this? We should emphasize that we are always assuming our
population is described by a given family of distributions (normal, binomial.,
gamma or ...) with one or several unknown parameters. The answer to
the above question will depend on what family of distributions we assume
describes the population.

We start with a heuristic definition of a sufficient statistic. We say T is
a sufficient statistic if the statistician who knows the value of T can do just
as good a job of estimating the unknown parameter # as the statistician who
knows the entire random sample.

The mathematical definition is as follows. A statistic T = r( X, Xa, -+, X,
iz a sufficient statistic if for each £, the conditional distribution of X, Xa.--- . X,
given T = and # does not depend on 8.



To motivate the mathematical definition, we consider the following “ex-
periment.” Let T = r(Xy,---, X,) be a sufficient statistic. There are two
statisticians: we will call them A and B. Statistician A knows the entire ran-
dom sample X, ---, X, but statistician B only knows the value of T, call it
t. Since the conditional distribution of X, ---, X given # and T does not
depend on #, statistician B knows this conditional distribution. So he can
use his computer to generate a random sample X7, ---, X7 which has this
conditional distribution. But then his random sample has the same distri-
bution as a random sample drawn from the population (with its unknown
value of #). So statistician B can use his random sample X7, --- X to com-
pute whatever statistician A computes using his random sample X, -+ X,
and he will (on average) do as well as statistician A. Thus the mathematical
definition of sufficient statistic implies the heuristic definition.

It is difficult to use the definition to check if a statistic is sufficient or to
find a sufficient statistic. Luckily, there is a theorem that makes it easy to
find sufficient statistics.

Theorem 1. (Factorization theorem) Let X, Xy, --- . X, be a random sam-
ple with joint density f(x). 19, 2,|0). A statistic T = r( X}, Xy,--- X))
is sufficient if and only if the joint density can be factored as follows:

fley,xa, -+ xolf) = ulay 29, - - xo) vlr(oy, 2o, -+, 2,)., B) (2)

where u and v are non-negative functions. The function u can depend on
the full random sample 1,,--- . x,, but not on the unknown parameter 4.
The function v can depend on 8, but can depend on the random sample only
through the value of r{zy,---.1,).



Rao Blackwell theorem

The Rao-Blackwell theorem (sometimes called the Rao-Blackwell-Kolmogorov
theorem or Rao-Blackwellization) is a way to improve the efficiency of initial
estimators. Estimators are observable random variables used to estimate quantities. For
example, the (observable) sample meanis an estimator for the (unknown) population

mean.
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Theorem 1.1 Let X ~ fy(x.8) and T be sufficient for#, x € X andt € T. Let I/ be any unbiased estimator
for g(#). Define Vi = E(U|T =1t). Then V' is an unbicsed estimator for g(#) and Var(V') < Var(l) with
equality iff V = U with probability one.

Proof 1.1 Since U = U(X) is an estimator, it is also a statistic. And, since T is sufficient for 8 we have
V = EU|IT=t) (1)

= Lu(m}fxw(ﬂ‘r =1) dr (2)

By Fisher, and noting that u(x) is a function of x and not 8, we see that V' is O-free. Thus, V' is o statistic
as well.

Further,
EU) = g(f) (3)
— [ ue)ix(z.6) ds ()
= L[ uetsetelr =) do] frit0) 5)
L5 MNeT=t
- [ o(t) fr(t,6) dt (6)
T
= E¥) (7)
So, V is unbiased.
Now,
Var(') = E(U—E(IN))? (8)
= E(U- E{V 1 E (9)
E{ (U=V))+E((V-E(V))?)+2E((U - V)(V - E(V))) (10)
Since we know that E(U') = E(V) by above,
E((U - V)V -E(V))) = fx(v —E(V)(U — V) fx(z.0) dx (11)
= [w-rwp|[ W-Viarer =0 @] e a2
T XeT=t
= [V —BW)0)sat.0) a (13)
= 0 (14)
and thus
Var(U) = E((U-V)))+E((V-E(V))?) (15)
> E((V-E(V))) (16)
> Var(V) (17)

with equality iff E ((U = V)2) =0 or V = U with probability one.



